Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Med Phys ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656549

RESUMEN

BACKGROUND: The pursuit of adaptive radiotherapy using MR imaging for better precision in patient positioning puts stringent demands on the hardware components of the MR scanner. Particularly in particle therapy, the dose distribution and thus the efficacy of the treatment is susceptible to beam attenuation from interfering materials in the irradiation path. This severely limits the usefulness of conventional imaging coils, which contain highly attenuating parts such as capacitors and preamplifiers in an unknown position, and requires development of a dedicated radiofrequency (RF) coil with close consideration of the materials and components used. PURPOSE: In MR-guided radiation therapy in the human torso, imaging coils with a large FOV and homogeneous B1 field distribution are required for reliable tissue classification. In this work, an imaging coil for MR-guided particle therapy was developed with minimal ion attenuation while maintaining flexibility in treatment. METHODS: A birdcage coil consisting of nearly radiation-transparent materials was designed and constructed for a closed-bore 1.5 T MR system. Additionally, the coil was mounted on a rotatable patient capsule for flexible positioning of the patient relative to the beam. The ion attenuation of the RF coil was investigated in theory and via measurements of the Bragg peak position. To characterize the imaging quality of the RF coil, transmit and receive field distributions were simulated and measured inside a homogeneous tissue-simulating phantom for various rotation angles of the patient capsule ranging from 0° to 345° in steps of 15°. Furthermore, simulations with a heterogeneous human voxel model were performed to better estimate the effect of real patient loading, and the RF coil was compared to the internal body coil in terms of SNR for a full rotation of the patient capsule. RESULTS: The RF coil (total water equivalent thickness (WET) ≈ 420 µm, WET of conductor ≈ 210 µm) can be considered to be radiation-transparent, and a measured transmit power efficiency (B1 +/ P $\sqrt {\mathrm{P}} $ ) between 0.17 µT/ W $\sqrt {\mathrm{W}} $ and 0.26 µT/ W $\sqrt {\mathrm{W}} $ could be achieved in a volume (Δz = 216 mm, complete x and y range) for the 24 investigated rotation angles of the patient capsule. Furthermore, homogeneous transmit and receive field distributions were measured and simulated in the transverse, coronal and sagittal planes in a homogeneous phantom and a human voxel model. In addition, the SNR of the radiation-transparent RF coil varied between 103 and 150, in the volume (Δz = 216 mm) of a homogeneous phantom and surpasses the SNR of the internal body coil for all rotation angles of the patient capsule. CONCLUSIONS: A radiation-transparent RF coil was developed and built that enables flexible patient to beam positioning via full rotation capability of the RF coil and patient relative to the beam, with results providing promising potential for adaptive MR-guided particle therapy.

3.
NMR Biomed ; 37(6): e5113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316107

RESUMEN

31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and ß-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.


Asunto(s)
Algoritmos , Magnesio , Magnesio/análisis , Magnesio/química , Concentración de Iones de Hidrógeno , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Fósforo/química , Isótopos de Fósforo
4.
MAGMA ; 37(1): 27-38, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737942

RESUMEN

OBJECTIVE: First implementation of dynamic oxygen-17 (17O) MRI at 7 Tesla (T) during neuronal stimulation in the human brain. METHODS: Five healthy volunteers underwent a three-phase 17O gas (17O2) inhalation experiment. Combined right-side visual stimulus and right-hand finger tapping were used to achieve neuronal stimulation in the left cerebral hemisphere. Data analysis included the evaluation of the relative partial volume (PV)-corrected time evolution of absolute 17O water (H217O) concentration and of the relative signal evolution without PV correction. Statistical analysis was performed using a one-tailed paired t test. Blood oxygen level-dependent (BOLD) experiments were performed to validate the stimulation paradigm. RESULTS: The BOLD maps showed significant activity in the stimulated left visual and sensorimotor cortex compared to the non-stimulated right side. PV correction of 17O MR data resulted in high signal fluctuations with a noise level of 10% due to small regions of interest (ROI), impeding further quantitative analysis. Statistical evaluation of the relative H217O signal with PV correction (p = 0.168) and without (p = 0.382) did not show significant difference between the stimulated left and non-stimulated right sensorimotor ROI. DISCUSSION: The change of cerebral oxygen metabolism induced by sensorimotor and visual stimulation is not large enough to be reliably detected with the current setup and methodology of dynamic 17O MRI at 7 T.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Isótopos de Oxígeno , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Oxígeno
5.
Magn Reson Imaging ; 105: 75-81, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939972

RESUMEN

PURPOSE: To apply multi-shot high-resolution multi inversion spin and gradient echo (MI-SAGE) acquisition for simultaneous liver T1, T2 and T2* mapping. METHODS: Inversion prepared spin- and gradient-echo EPI was developed with ascending slice order across measurements for efficient acquisition with T1, T2, and T2⁎ weighting. Multi-shot EPI was also implemented to minimize distortion and blurring while enabling high in-plane resolution. A dictionary-matching approach was used to fit the images to quantitative parameter maps, which were compared to T1 measured by modified Look-Locker (MOLLI), T1 measured by variable flip angle (VFA), T2 measured by multiple echo time-based Half Fourier Single-shot Turbo spin-Echo (HASTE), T2 measured by radial turbo-spin-echo (rTSE) and T2⁎ measured by multiple gradient echo (MGRE) sequences. RESULTS: The multi-shot variant of the sequence achieved higher in-plane resolution of 1.7 × 1.7 mm2 with good image quality in 28 s. Derived quantitative maps showed comparable values to conventional mapping methods. As measured in phantom and in vivo, MOLLI, MESE and MGRE give closest values to MISAGE. VFA, HASTE and rTSE show obvious overestimation. CONCLUSIONS: The proposed multi-shot inversion prepared spin- and gradient-echo EPI sequence allows for high-resolution quantitative T1, T2 and T2 liver tissue characterization in a single breath-hold scan.


Asunto(s)
Hígado , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Hígado/diagnóstico por imagen , Contencion de la Respiración , Fantasmas de Imagen
6.
Magn Reson Imaging ; 105: 133-141, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939973

RESUMEN

Maxwell or concomitant fields imprint additional phases on the transverse magnetization. This concomitant phase may cause severe image artifacts like signal voids or distort the quantitative parameters due to the induced intravoxel dephasing. In particular, double diffusion encoding (DDE) schemes with two pairs of bipolar diffusion-weighting gradients separated by a refocusing radiofrequency (RF) pulse are prone to concomitant field-induced artifacts. In this work, a method for reducing concomitant field effects in these DDE sequences based on additional oscillating gradients is presented. These oscillating gradient pulses obtained by constrained optimization were added to the original gradient waveforms. The modified sequences reduced the accumulated concomitant phase without significant changes in the original sequence characteristics. The proposed method was applied to a DDE acquisition scheme consisting of 60 pairs of diffusion wave vectors. For phantom as well as for in vivo experiments, a considerable increase in the signal-to-noise ratio (SNR) was obtained. For phantom measurements with a diffusion weighting of b = 2000 s/mm2 for each of the gradient pairs, an SNR increase of up to 40% was observed for a transversal slice that had a distance of 5 cm from the isocenter. For equivalent slice parameters, in vivo measurements in the brain of a healthy volunteer exhibited an increase in SNR of up to 35% for b = 750 s/mm2 for each weighting. These findings are supported by corresponding simulations, which also predict a positive effect on the SNR. In summary, the presented method leads to an SNR gain without additional RF refocusing pulses.


Asunto(s)
Artefactos , Encéfalo , Humanos , Encéfalo/diagnóstico por imagen , Relación Señal-Ruido , Fantasmas de Imagen , Voluntarios Sanos
7.
Radiol Imaging Cancer ; 6(1): e220127, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38133553

RESUMEN

Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.


Asunto(s)
Neoplasias Encefálicas , Glioma , Masculino , Humanos , Femenino , Persona de Mediana Edad , Medios de Contraste , Estudios Prospectivos , Gadolinio , Antígeno Ki-67 , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/patología , Necrosis , Concentración de Iones de Hidrógeno
8.
Eur Radiol Exp ; 7(1): 80, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093075

RESUMEN

BACKGROUND: To analyze regional variations in T2 and T2* relaxation times in wrist joint cartilage and the triangular fibrocartilage complex (TFCC) at 3 and 7 T and to compare values between field strengths. METHODS: Twenty-five healthy controls and 25 patients with chronic wrist pain were examined at 3 and 7 T on the same day using T2- and T2*-weighted sequences. Six different regions of interest (ROIs) were evaluated for cartilage and 3 ROIs were evaluated at the TFCC based on manual segmentation. Paired t-tests were used to compare T2 and T2* values between field strengths and between different ROIs. Spearman's rank correlation was calculated to assess correlations between T2 and T2* time values at 3 and 7 T. RESULTS: T2 and T2* time values of the cartilage differed significantly between 3 and 7 T for all ROIs (p ≤ 0.045), with one exception: at the distal lunate, no significant differences in T2 values were observed between field strengths. T2* values differed significantly between 3 and 7 T for all ROIs of the TFCC (p ≤ 0.001). Spearman's rank correlation between 3 and 7 T ranged from 0.03 to 0.62 for T2 values and from 0.01 to 0.48 for T2* values. T2 and T2* values for cartilage varied across anatomic locations in healthy controls at both 3 and 7 T. CONCLUSION: Quantitative results of T2 and T2* mapping at the wrist differ between field strengths, with poor correlation between 3 and 7 T. Local variations in cartilage T2 and T2* values are observed in healthy individuals. RELEVANCE STATEMENT: T2 and T2* mapping are feasible for compositional imaging of the TFCC and the cartilage at the wrist at both 3 and 7 T, but the clinical interpretation remains challenging due to differences between field strengths and variations between anatomic locations. KEY POINTS: •Field strength and anatomic locations influence T2 and T2* values at the wrist. •T2 and T2* values have a poor correlation between 3 and 7 T. •Local reference values are needed for each anatomic location for reliable interpretation.


Asunto(s)
Articulación de la Muñeca , Muñeca , Humanos , Muñeca/diagnóstico por imagen , Articulación de la Muñeca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Cartílago
10.
Biomedicines ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37760790

RESUMEN

Amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) imaging can predict clinical outcomes in patients with glioma. However, the treatment of brain tumors is accompanied by the deposition of blood products within the tumor area in most cases. For this reason, the objective was to assess whether the diagnostic interpretation of the APT and ssMT is affected by methemoglobin (mHb) and hemosiderin (Hs) depositions at the first follow-up MRI 4 to 6 weeks after the completion of radiotherapy. A total of 34 participants underwent APT and ssMT imaging by applying reconstruction methods described by Zhou et al. (APTwasym), Goerke et al. (MTRRexAPT and MTRRexMT) and Mehrabian et al. (MTconst). Contrast-enhancing tumor (CE), whole tumor (WT), mHb and Hs were segmented on contrast-enhanced T1wCE, T2w-FLAIR, T1w and T2*w images. ROC-analysis, Kaplan-Meier analysis and the log rank test were used to test for the association of mean contrast values with therapy response and overall survival (OS) before (WT and CE) and after correcting tumor volumes for mHb and Hs (CEC and WTC). CEC showed higher associations of the MTRRexMT with therapy response (CE: AUC = 0.677, p = 0.081; CEC: AUC = 0.705, p = 0.044) and of the APTwasym with OS (CE: HR = 2.634, p = 0.040; CEC: HR = 2.240, p = 0.095). In contrast, WTC showed a lower association of the APTwasym with survival (WT: HR = 2.304, p = 0.0849; WTC: HR = 2.990, p = 0.020). Overall, a sophisticated correction for blood products did not substantially influence the clinical performance of APT and ssMT imaging in patients with glioma early after radiotherapy.

11.
Front Neurosci ; 17: 1186558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404469

RESUMEN

Dynamic oxygen-17 (17O) magnetic resonance imaging (MRI) is an imaging method that enables a direct and non-invasive assessment of cerebral oxygen metabolism and thus potentially the distinction between viable and non-viable tissue employing a three-phase inhalation experiment. The purpose of this investigation was the first application of dynamic 17O MRI at 7 Tesla (T) in a patient with stroke. In this proof-of-concept experiment, dynamic 17O MRI was applied during 17O inhalation in a patient with early subacute stroke. The analysis of the relative 17O water (H217O) signal for the affected stroke region compared to the healthy contralateral side revealed no significant difference. However, the technical feasibility of 17O MRI has been demonstrated paving the way for future investigations in neurovascular diseases.

12.
Magn Reson Med ; 90(4): 1569-1581, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37317562

RESUMEN

PURPOSE: The purpose of this study was to compare the potential of asymmetry-based (APTwasym ), Lorentzian-fit-based (PeakAreaAPT and MTconst ), and relaxation-compensated (MTRRex APT and MTRRex MT) CEST contrasts of the amide proton transfer (APT) and semi-solid magnetization transfer (ssMT) for early response assessment and prediction of progression-free survival (PFS) in patients with glioma. METHODS: Seventy-two study participants underwent CEST-MRI at 3T from July 2018 to December 2021 in a prospective clinical trial four to 6 wk after the completion of radiotherapy for diffuse glioma. Tumor segmentations were performed on T2w -FLAIR and contrast-enhanced T1w images. Therapy response assessment and determination of PFS were performed according to response assessment in neuro oncology (RANO) criteria using clinical follow-up data with a median observation time of 9.2 mo (range, 1.6-40.8) and compared to CEST MRI metrics. Statistical testing included receiver operating characteristic analyses, Mann-Whitney-U-test, Kaplan-Meier analyses, and logrank-test. RESULTS: MTconst (AUC = 0.79, p < 0.01) showed a stronger association with RANO response assessment compared to PeakAreaAPT (AUC = 0.71, p = 0.02) and MTRRex MT (AUC = 0.71, p = 0.02), and enabled differentiation of participants with pseudoprogression (n = 8) from those with true progression (AUC = 0.79, p = 0.02). Furthermore, MTconst (HR = 3.04, p = 0.01), PeakAreaAPT (HR = 0.39, p = 0.03), and APTwasym (HR = 2.63, p = 0.02) were associated with PFS. MTRRex APT was not associated with any outcome. CONCLUSION: MTconst , PeakAreaAPT, and APTwasym imaging predict clinical outcome by means of progression-free survival. Furthermore, MTconst enables differentiation of radiation-induced pseudoprogression from disease progression. Therefore, the assessed metrics may have synergistic potential for supporting clinical decision making during follow-up of patients with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Amidas , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Glioma/diagnóstico por imagen , Glioma/radioterapia , Glioma/patología , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Protones , Curva ROC
13.
Radiother Oncol ; 184: 109694, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150450

RESUMEN

BACKGROUND AND PURPOSE: Outcome prediction of patients with glioma early after the completion of radiotherapy represents a major clinical challenge. Previously, the prognostic value of chemical exchange saturation transfer (CEST) imaging has been demonstrated in patients with newly diagnosed glioma. The objective of this study was to assess the potential of amide proton transfer (APT)-, relayed nuclear Overhauser effect (rNOE)- and semi-solid magnetization transfer (ssMT)-imaging according to Zhou et al. (APTwasym), Goerke et al. (MTRRexAPT, MTRRexNOE and MTRRexMT) and Mehrabian et al. (PeakAreaAPT, PeakAreaNOE and MTconst) for the prognostication of the overall survival (OS) of patients with glioma at the first follow-up after the completion of radiotherapy. MATERIALS AND METHODS: 49 of 72 participants with diffuse glioma, who underwent CEST MRI at 3T between July 2018 and December 2021 4 to 6 weeks after the completion of radiotherapy, were analyzed. Contrast-enhancing tumor (CE) and whole tumor (WT) volumes were segmented on T2w-FLAIR and contrast-enhanced T1w images. Kaplan-Meier analysis and logrank-test were used for statistical analyses. RESULTS: APTw imaging demonstrated the strongest association with OS (HR = 4.66, p < 0.001). The MTconst (HR = 2.54, p = 0.044) was associated with the OS of participants with residual contrast-enhancing glioma tissue, whilst the MTRRexAPT (HR = 2.44, p = 0.056) showed a trend in this sub-cohort. The MTRRexNOE, MTRRexMT and PeakAreaNOE were not associated with survival. CONCLUSION: Imaging of the APT and ssMT at the first follow-up 4 to 6 weeks after the completion of radiotherapy at 3T were associated with the overall survival of study participants with glioma.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patología , Protones , Estudios de Seguimiento , Amidas , Glioma/diagnóstico por imagen , Glioma/radioterapia , Glioma/patología , Imagen por Resonancia Magnética/métodos
14.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37029886

RESUMEN

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Asunto(s)
Imagen por Resonancia Magnética , Imagen de Cuerpo Entero , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Imagen de Cuerpo Entero/métodos , Alemania , Campos Magnéticos
15.
Neuroimage ; 270: 119950, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36822250

RESUMEN

Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.


Asunto(s)
Ataxias Espinocerebelosas , Humanos , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología , Cerebelo/patología , Corteza Cerebelosa/diagnóstico por imagen , Corteza Cerebelosa/patología , Núcleos Cerebelosos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Atrofia/patología
16.
Radiology ; 307(2): e220753, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36625744

RESUMEN

Background Ultrahigh-field-strength MRI at 7 T may permit superior visualization of noninflammatory wrist pathologic conditions, particularly due to its high signal-to-noise ratio compared with the clinical standard of 3 T, but direct comparison studies are lacking. Purpose To compare the subjective image quality of 3-T and 7-T ultrahigh-field-strength wrist MRI through semiquantitative scoring of multiple joint tissues in a multireader study. Materials and Methods In this prospective study, healthy controls and participants with chronic wrist pain underwent 3-T and 7-T MRI (coronal T1-weighted turbo spin-echo [TSE], coronal fat-suppressed proton-density [PD]-weighted TSE, transversal T2-weighted TSE) on the same day, from July 2018 to June 2019. Images were scored by seven musculoskeletal radiologists. The overall image quality, presence of artifacts, homogeneity of fat suppression, and visualization of cartilage, the triangular fibrocartilage complex (TFCC), and scapholunate and lunotriquetral ligaments were semiquantitatively assessed. Pairwise differences between 3 T and 7 T were assessed using the Wilcoxon signed-rank test. Interreader reliability was determined using the Fleiss kappa. Results In total, 25 healthy controls (mean age, 25 years ± 4 [SD]; 13 women) and 25 participants with chronic wrist pain (mean age, 39 years ± 16; 14 men) were included. Overall image quality (P = .002) and less presence of artifacts at PD-weighted fat-suppressed MRI were superior at 7 T. T1- and T2-weighted MRI were superior at 3 T (both P < .001), as was fat suppression (P < .001). Visualization of cartilage was superior at 7 T (P < .001), while visualization of the TFCC (P < .001) and scapholunate (P = .048) and lunotriquetral (P = .04) ligaments was superior at 3 T. Interreader reliability showed slight to substantial agreement for the detected pathologic conditions (κ = 0.20-0.64). Conclusion A 7-T MRI of the wrist had potential advantages over 3-T MRI, particularly in cartilage assessment. However, superiority was not shown for all parameters; for example, visualization of the triangular fibrocartilage complex and wrist ligaments was superior at 3 T. © RSNA, 2023 Supplemental material is available for this article.


Asunto(s)
Dolor Crónico , Muñeca , Masculino , Humanos , Femenino , Adulto , Estudios Prospectivos , Reproducibilidad de los Resultados , Articulación de la Muñeca/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Artralgia
17.
NMR Biomed ; 36(3): e4847, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36259249

RESUMEN

Substantial cortical gray matter tissue damage, which correlates with clinical disease severity, has been revealed in multiple sclerosis (MS) using advanced magnetic resonance imaging (MRI) methods at 3 T and the use of ultra-high field, as well as in histopathology studies. While clinical assessment mainly focuses on lesions using T 1 - and T 2 -weighted MRI, quantitative MRI (qMRI) methods are capable of uncovering subtle microstructural changes. The aim of this ultra-high field study is to extract possible future MR biomarkers for the quantitative evaluation of regional cortical pathology. Because of their sensitivity to iron, myelin, and in part specifically to cortical demyelination, T 1 , T 2 , R 2 * , and susceptibility mapping were performed including two novel susceptibility markers; in addition, cortical thickness as well as the volumes of 34 cortical regions were computed. Data were acquired in 20 patients and 16 age- and sex-matched healthy controls. In 18 cortical regions, large to very large effect sizes (Cohen's d ≥ 1) and statistically significant differences in qMRI values between patients and controls were revealed compared with only four regions when using more standard MR measures, namely, volume and cortical thickness. Moreover, a decrease in all susceptibility contrasts ( χ , χ + , χ - ) and R 2 * values indicates that the role of cortical demyelination might outweigh inflammatory processes in the form of iron accumulation in cortical MS pathology, and might also indicate iron loss. A significant association between susceptibility contrasts as well as R 2 * of the caudal middle frontal gyrus and disease duration was found (adjusted R2 : 0.602, p = 0.0011). Quantitative MRI parameters might be more sensitive towards regional cortical pathology compared with the use of conventional markers only and therefore may play a role in early detection of tissue damage in MS in the future.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Imagen por Resonancia Magnética/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Vaina de Mielina/patología , Encéfalo/patología
18.
Magn Reson Med ; 89(1): 469-476, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089826

RESUMEN

PURPOSE: This study aims to find a relation between the number of channels and the computational burden for specific absorption rate (SAR) calculation using virtual observation point-based SAR compression. METHODS: Eleven different arrays of rectangular loops covering a cylinder of fixed size around the head of an anatomically correct voxel model were simulated. The resulting Q-matrices were compressed with 2 different compression algorithms, with the overestimation fixed to a certain fraction of worst-case SAR, median SAR, or minimum SAR. The latter 2 were calculated from 1e6 normalized random excitation vectors. RESULTS: The number of virtual observation points increased with the number of channels to the power of 2.3-3.7, depending on the compression algorithm when holding the relative error fixed. Together with the increase in the size of the Q-matrices (and therefore the size of the virtual observation points), the total increase in computational burden with the number of channels was to the power of 4.3-5.7. CONCLUSION: The computational cost emphasizes the need to use the best possible compression algorithms when moving to high channel counts.


Asunto(s)
Compresión de Datos , Imagen por Resonancia Magnética , Imagen por Resonancia Magnética/métodos , Algoritmos , Simulación por Computador , Fantasmas de Imagen
19.
Magn Reson Imaging ; 91: 24-31, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35550841

RESUMEN

PURPOSE: In fibroglandular breast tissue, conventional dynamic contrast-enhanced MR-mammography is known to be affected by water content changes during the menstrual cycle. Likewise, amide proton transfer (APT) chemical exchange saturation transfer (CEST)-MRI might be inherently prone to the menstrual cycle, as CEST signals are indirectly detected via the water signal. The purpose of this study was to investigate the influence of the menstrual cycle on APT CEST-MRI in fibroglandular breast tissue. METHOD: Ten healthy premenopausal women (19-34 years) were included in this IRB approved prospective study and examined twice during their menstrual cycle. Examination one and two were performed during the first half (day 2-8) and the second half (day 15-21) of the menstrual cycle, respectively. As a reference for the APT signal in malignant breast tumor tissue, previously reported data of nine breast cancer patients were included in this study. CEST-MRI (B1 = 0.7µT) was performed on a 7 T whole-body scanner followed by a multi-Lorentzian fit analysis. The APT signal was corrected for B0/B1-field inhomogeneities, fat signal contribution, and relaxation effects of the water signal and evaluated in the fibroglandular breast tissue. Intra-individual APT signal differences between examination one and two were compared using the Wilcoxon signed-rank test. The level of significance was set at p < 0.05. RESULTS: The APT signal showed no significant difference in the fibroglandular breast tissue of healthy premenopausal volunteers throughout the menstrual cycle (p = 1.00) (examination 1 vs. examination 2: mean and standard deviation = 3.24 ± 0.68%Hz vs. 3.30 ± 0.73%Hz, median and IQR = 3.36%Hz and 0.87%Hz vs. 3.38%Hz and 0.71%Hz). CONCLUSION: The present study provides an important basis for the clinical application of APT CEST-MRI as an additional contrast mechanism in MR-mammography, as menstrual cycle-related APT signal fluctuations seem to be negligible compared to the APT signal increase in breast cancer tissue.


Asunto(s)
Neoplasias de la Mama , Protones , Amidas/química , Neoplasias de la Mama/diagnóstico por imagen , Dimaprit/análogos & derivados , Femenino , Humanos , Imagen por Resonancia Magnética , Ciclo Menstrual , Estudios Prospectivos , Agua
20.
Magn Reson Med ; 88(2): 511-523, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35381111

RESUMEN

PURPOSE: The non-invasive determination of the free magnesium ion concentration ([Mg2+free ]) using 31 P MRSI in vivo is of interest in research on various pathologies, e.g. diabetes. The purpose of this study was to demonstrate the potential of 31 P MRSI at 7 T to enable volumetric, high-resolution mapping of [Mg2+free ]. METHODS: 3D 31 P MRSI datasets from the lower leg of three healthy volunteers were acquired at B0  = 7 T with a nominal spatial resolution of (8 × 8 × 16) mm3 in 56 min. Volumetric [Mg2+free ] maps were calculated based on the quantified local chemical shift difference between the α- and ß-resonance of adenosine triphosphate (ATP) considering also local pH values. Mean [Mg2+free ] values from three different muscle groups were compared. To demonstrate the potential of reducing the measurement time, the analysis was repeated on the acquired MRSI data retrospectively reconstructed with fewer averages. RESULTS: The generated [Mg2+free ] maps revealed local differences, and mean [Mg2+free ] values of (1.08 ± 0.03) mM were found in the tibialis anterior, (0.91 ± 0.04) mM in the soleus and (0.98 ± 0.03) mM in the gastrocnemius medialis. The time-reduced 28-min scan resulted in comparable [Mg2+free ] maps, and mean values being in agreement with the values from the 56-min scan. CONCLUSION: 31 P MRSI at 7 T enables volumetric, high-resolution mapping of free magnesium ion content in human lower leg muscles. The measurement time of the 31 P MRSI acquisition can be reduced to 28 min, opening the potential to apply volumetric [Mg2+free ] mapping for the investigation of pathologies with altered magnesium homeostasis.


Asunto(s)
Pierna , Magnesio , Encéfalo , Humanos , Pierna/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Músculo Esquelético/diagnóstico por imagen , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...